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Abstract—A physical understanding is gained of some results acquired in the analysis of transient
propagation of uniaxial elastic waves in weakly coupled periodic stacks using simple analytical
models. Three simplified models are examined : a mass—spring chain, a single mass spring attached
to a delayed moving base, and high frequencies of an elastic mass reacted upon by a spring.
Closed-form expressions and asymptotic behavior are obtained for attenuation of maximum stress,
characteristic velocities, internal stress distribution and transmission or suppression of high-
frequency oscillations. The results provide insights in the design of impact resistant structural systems
using layered periodic stacks. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

The study of transient uniaxial waves in layered media is useful in composites, geophysics,
ocean acoustics and oil exploration. A large body of work was produced that treated the
harmonic propagation of waves in layered media excited by monochromatic sources.
Thompson (1950), Haskel (1953), Rytov (1956), Anderson (1961) and Tennenbaum (1992)
discussed time harmonic propagation in 1-D layered media. Sun (1968), Delph (1978, 1979,
1980), and Herrmann (1982) extended the time periodic waves to 3-D periodic media.
Mead (1971, 1975, 1978, 1984, 1986), Engels (1978), Gupta (1980), McDaniel (1982),
Faulkner (1985), Keane (1989) and Rousseau (1989) considered simple periodic structures
and applied Floquet theory to propagation and attenuation zones. Robinson (1972), Lee
(1973), Chao (1975), Golebicwska (1980), Shah (1982), Kundu (1985), Mal (1988), and
Braga (1990) discussed waves in composites. The methods used to analyze this problem
ranged from purely numerical, like discretization and geometric optics, to purely analytical,
like modal and transform techniques. In contrast with the extensive work reported on
harmonic waves, little attention was devoted to transient waves despite their importance in
many practical applications. El-Raheb (1993) treated transient uniaxial waves in finite
ordered and disordered bi-periodic stacks. The method relied on deriving transfer matrices
in harmonic space relating state vectors at the interface between layers. Equilibrium of
stress and continuity of displacement at each interface produced a system of tri-diagonal
block matrices yielding the modal characteristics of the stack. Transient response was found
from an expansion in these modes. Clearly, the complexity of the analytical solution in El-
Raheb (1993) limits its usefulness in developing insights into the character of uniaxial
propagation. In this reference, results on transient uniaxial waves were obtained for a stack
of alternating hard and weak layers excited by a trapezoidal pulse of short duration (see
Fig. 1(a)).

The purpose of this study is to gain physical understanding of these results by a series
of less general but simpler consistent analytical models, from which concise formulae
describing propagation can be obtained. These models include: (A) the lumped mass—
spring model; (B) the oscillator with delayed moving boundary model; and (C), the
high frequency transmission model. A complete account of each model is found in the
Appendices.

Since the first propagation zone (PZ1) of the weakly coupled periodic stack is para-
mount in propagation, the first simplified Model (A) termed “lumped mass—spring chain”
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Fig. 1. (a) Geometry of periodic stack and trapezoidal forcing pulse. (b) Histories of « (microns)
and ¢ at interface of sets along the basic stack with m, = 20, .# = 1.034, trapezoidal pulse with
iy = 20 us. (Continued opposite.)

reduces the continuum to a finite number of identical masses connected by weak springs
where each hard layer acts as rigid mass and each weak layer acts as a massless spring.
Results from this model re-confirm the importance of PZ1 on transient response and yield
simple expressions for phase and group velocities ¢, and ¢, in PZ1 in terms of properties of
hard and weak layers. Furthermore, an integral of the dynamic equations of motion of
each set yields a conservation law relating maximum stress of first arrival to width of the
trapezoidal forcing pulse and period of the primary stress wave prior to reflections. Indeed,
this is identical to the scaling law derived in El-Raheb (1993) relating peak stress of first
arrival to frequency interval of PZ1 and width of the trapezoidal forcing pulse. Model (A)
also explains distribution of peak stress of first arrival within a hard layer and location of
its minimum along the layer.

The almost exact match of response histories from Model (A) and the modal solution
in El-Raheb (1993) suggests one more level of simplification and Model (B) termed “the
delayed moving boundary”’, which confines itself to a single mass and a single spring of
Model (A) but with the spring connected to a base duplicating a delayed motion of the
mass (see Fig. 10(a)). The hypothesis behind this model is that the wave front moves along
the stack at the transient phase velocity in PZ1. This means that a pulse produced on top
of a set arrives at the interface between one set and the adjacent set after a time delay
equaling the thickness of the periodic set divided by transient phase velocity. Since the
phase velocity derived in Model (A) is frequency dependent and the resonant frequency of
a mass—spring set is the dominant frequency in the dispersed pulse, phase velocity is then
evaluated at that frequency, which equals half the frequency interval in PZ1. Results of this
model agree closely with results of Model (A). In this way, propagation in a weakly coupled
periodic stack is reduced to its simplest constituents, namely frequency of the set and phase
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velocity evaluated at that frequency. This Model also shows that rate of attenuation of
peak stress of first arrival along the stack is proportional to arrival time to the power — 1/3.

As explained in El-Raheb (1993), the second propagation zone PZ2 modulates response
by high frequency from elastic resonances of the hard layer. The third Model (C), termed
“transmission of elastic frequencies of the hard layer”, relies on analysis of a single set
including elasticity of the hard layer. It identifies the two parameters controlling high
frequency transmission as rise time of the forcing pulse and dynamic stiffness of the periodic
set. Furthermore, a simplified expression for stress response shows that if the period of
elastic resonance of the hard layer equals rise time of the forcing pulse, high frequency is
suppressed.

Section 2 reviews results of El-Raheb (1993) and summarizes important features of
transient uniaxial propagation in a finite periodic stack. Section 3 derives Model A of the
finite lumped mass-spring chain. Section 4 derives Model B. Section 5 derives Model C.

2. REVIEW OF RESULTS IN EL-RAHEB (1993)

The following lists results in El-Raheb (1993), each accompanied by a brief explanation
or extension obtained by the present analysis:

1. In weakly coupled bi-periodic uniaxial stacks (see Fig. 1(a)), frequency response is
divided into propagation zones PZ and attenuation zones AZ similar to pass and stop
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bands in a filter. It was observed that the first propagation zone PZ1 is paramount.
In fact, motions in PZ1 are those of a finite rigid mass—spring chain.

2. At a fixed point along the stack, peak stress response prior to reflections from an
external boundary is termed peak stress of first arrival, ¢.,,. In El-Raheb (1993), a
non-dimensional parameter, transmissibility .#, was derived that scales and controls
0. Wave transmissibility is defined as . = Awpy,t/m where Awpy, 1s the frequency
interval of PZ1 and ¢;is the time interval of the equivalent rectangular forcing function
that conserves impulse. In a stack of bi-periodic sets made of two materials A and B,
Awpzy > 2¢,4/[h4(27)'7?] where ¢, 5 is the speed of sound, p,, is density, A, zis thickness
in layers A and B, 7 = (pc,)/{(pscs) is ratio of acoustic impedances, and # = (Ayc,)/
(h4cp) 1s ratio of travel times. When .# < 1, ¢, is attenuated, while when £ > 1,
o, is initially magnified, reaching a maximum and then attenuating along the stack.
These results, as well as a relation between o, and .# are obtained by the mass—spring
chain description in a conservation form.

3. In the hard layer, o,,, is larger at the interfaces than within. A caustic generated by
the envelope of the instantaneous linear stress distributions is obtained based on the
mass—spring chain description that shows a minimum of ¢,,, occuring at 0.6A,,.

4. Anexpression was obtained for maximum phase velocity ¢, in the limit when frequency
w is zero. This expression is extended using the mass—spring chain description to a
Taylor’s series expansion of both phase velocity ¢, and group velocity ¢, in terms only
of even powers of the frequency parameter (wh,/c,) where h, = h,+ hyis the thickness
of a periodic set. The ratios ¢,/c, and ¢,/c, are insensitive to .#.

5. When o,, attenuates along the stack, it does so monotonically. The asymptotic
behavior of a,,, in terms of arrival time of the wave front 7, is obtained by the delayed
moving base model.

6. High frequency oscillations H.F. are enhanced or suppressed depending on stack
configuration. By treating the hard layer as an elastic body reacted by the spring of
the weak layer, an expression for H.F. response is derived in terms of the fundamental
elastic resonant frequency of the hard layer and rise time of the forcing pulse. Also
derived is an expression for dynamic stiffness which controls H.F. amplitude.

In the sections to follow, the observations listed above will be tested, explained or
expanded upon following the same order as the introduction. Unless otherwise indicated,
the same test case will be used in examining the simplified models as in El-Raheb (1993).
By generating and displaying again the results of El-Raheb (1993) as well as results of the
simplified models, it is assured that they faithfully reproduce the observation to be explained.

From El-Raheb (1993), the properties of the basic stack (see Fig. 1(a)) with 20
biperiodic sets (#, = 20) are:

h,=1245cm; hy;=0.025cm
E,=320GPa; E;=69MPa

p4=325g/cm*; pp=1.07g/cm’.

The trapezoidal forcing function is of unit intensity, with 5 us rise and fall times, and a 15
us plateau (see Fig. 1(a)). The highest propagation zone in the modal expansion includes
the second elastic resonance of the hard layer. For the basic stack this translates to a
frequency of 800 kHz.

3. LUMPED MASS-SPRING CHAIN

In Fig. 1(b) there appears histories of displacement # and stress ¢ at the interfaces
between layers in the stack. Each box groups histories at five consecutive interfaces. At
each interface, u rises smoothly reaching a plateau after the forcing function elapses. The
plateau is disrupted by the reflected wave from the farthest set, n = 20. The behavior of
succeeding sets is shifted in time by an interval t? = nh,jc, where n is set number. These
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states of motion are typical of transient waves of rigid masses coupled by weak springs,
showing that the response is largely determined by PZ1 (see Appendix A). The results from
the method in El-Raheb (1993) and Model A are indistinguishable in this figure, which
confirms the adequacy of restricting the continuum model to PZ1. The effects of dispersion,
namely attenuation in o, and growth in trailing oscillations are clear from Fig. 1(b),
graphs (e)-(h). As the wave front moves further into the stack, do/dt decreases, the pulse
becomes wider, and ¢, attenuates to conserve linear momentum.

In Appendix A, the mass—spring chain description is developed. With the hypothesis
that prior to reflection from an external boundary, displacement histories at interfaces of a
layer tend to quiescence, the following form of conservation of momentum is derived :

3
18} dt = Ip
0

JLaidI=JLai_ldt=Ip (A14)

0 0

where g; is stress in the ith spring, ¢, is time for quiescence and 7, is impulse. Furthermore,
approximating the shape of the dispersed stress wave at the first interface by

o, () ~ %a,l,,x l:l—cos <27r%>j|, 1<T (1)

where T is the period of the primary wave, and substituting (1) in (A14) with ¢, = T yields

1
Oonx

T
5 = Ol = Ip

= Gl = Ohufog = 2,/ T @

where #,is the width of the equivalent rectangular forcing pulse delivering /,. The period T
of the primary stress wave depends on the relative magnitude of 2¢; and n/w, where o, is
the resonant frequency of the mass-spring set:

T =~ max [2t;, n/w,] 3)

when 2t < njw,, 6, ~2wtjn=F. When > njw, &, = 1. Therefore, if S <1,
él. <1, and only if # > 1 can 6., exceed unity, which was the conclusion also reached in
El-Raheb (1993).

In Fig. 2 there appears histories of ¢ for the basic stack along the first three hard
layers. Histories at six equidistant stations in each layer including the interfaces are grouped.
Figure 2(a) shows how ¢ evolves along the first layer from the trapezoidal shape at the
excited face, to the dispersed shape at the interface with the weak layer. In each of the
following hard layers (see Fig. 2(b), (c)) histories at the different stations in a layer cross
at the point where g, is minimum. This fact, not obvious before the results were obtained
and plotted, requires explanation. Consider the distribution of modal stress in a hard layer
given by the transfer matrix in eqn (2) of El-Raheb (1993):

u, = cos(k x)u, +(1/k 4 E ) sin(k x)o, (4a)

o, = —k,E, sin(k,,x)u; +cos(k x)o, (4b)
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Fig. 2. Histories of ¢ within each of the first 3 sets of the basic stack with m, = 20, # = 1.034,
ty= 20 ps.

where subscripts L and x denote quantities at the left boundary and at station x along the
layer, and k, = w/c,. For modes in PZ1:

Awpzyx
k.x <

~ %f(ﬁ)—lf’z < 0(1). (5)

Cy

Expanding sin(k ,x) and cos(k_x) in (4b) for small (k x) yields
Oy = =0’ p U X+0,. (6)

Equation (6) shows that in PZ1, modal stress is linear with x. Since transient stress is the
superposition of modal stresses, it too is linear with x.

Figure 3(a)-(d) traces the time evolution of ¢ within one particular hard layer. Each
line corresponds to a ¢ distribution at some fixed time ¢. The caustic generated by the
envelope of these lines coincides with ¢! . The results are shown for four different stacks
within the range of 0.478 < # < 1.551. It is clear in every case that o,, is minimum at
x/hy = 0.6. From Fig. 4 showing caustics in the three hard layers following the first for
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The parametric equation of the caustic may be determined from (6) using

each of the four values of .#, it becomes clear that this is true also independent of Z, 7 and
where subscripts L and R denote quantities at left and right of a layer. If x.(¢) is the local
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axial coordinate at a point on the caustic, holding x fixed, then finding the extrema of the
function in (7) yields (x., o.(x.)):

X (73 ®)
hy (6r—01)
where (") is time derivative. Substituting (8) in (7) gives o, at x:
(o0r—0y) 1
0, = ————=04,+0; = 7,,(). 9
oy 0= (0 ©)
Then o. is an extremum at the x,. where
Jdo, G ar—0,
= — = =0. 1
v, 0= =mh 70 (10)
Clearly, the minimum occurs at some ¢ = t,,, when 6x(,,,,) = 1(t,)
Oomn = O.L(tmn) = aR(tmn)
xcmn d-L
- . 11a
he = Gr—6D)|.,, (1)

This implies that o), achieves a minimum within a hard layer when stress is uniform
throughout that layer, and confirms that all stress histories cross at ¢,,,. That x,,,./h, = 0.6
implies that instantaneously at t = t,,,, the ¢ line rotates about x,,, yielding

dR(tmn) = _gd-L(tmn) (llb)
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From eqn (20) in El-Raheb (1993), the exact expression for propagation constant y
1s:

2

+2Z° . .
cosu = — 2; siny sin(yf) +cosycos(yf) = I' (12)
where y = wh,/c,. By definition
h h
szgzwsz_a)—s_ (13)
kK u  cos (I

[cosysin(yf) + Tsiny cos(yT)]

dw  hoc, . {14—2‘2
sin 7

1
+sinycos(yt) +Tcosy sin(yf)} . (14

In PZ1, y < 2(z%)~'? < 0(1). Expanding (12) for small y then substituting in (13) and (14)
yields

¢, = co[1 =027, —vay, +0(yp)] (15a)
¢, = co[1=30v,75 — 30475 +0(75)] (15b)

where

vy = [—2(1+ 1) +£2]/(24%2)
vy = [17(82)* —=20(22 + 3) (1 + %) — 120£°]/5760(72)*.

For # =0(1) and large (%): v, ~ 1/24, v, ~ 17/5760. These values duplicate results in
Balanis (1975). From (13a, b) it follows that:

> ¢,

¢, — ¢y 2 2056075 +0(yp).

This difference between ¢, and ¢, is responsible for spreading of the pulse since the wave
front moves at ¢, and g,,, moves at c,.

The asymptotic expansions (15a,b) motivate using exact expressions for ¢, and ¢, in
plots of (c,/c,) and (c,/c,) against y,, as shown in Fig. (5a), where the range 0 <7y, < 2 is
the width of PZ1. Figure 5(b) plots the same quantities against (h,/4) where A = 2n/k is
wave length. The curves in Fig. 5 are indistinguishable for different # and # in the range
04<#<1.S.

4. OSCILLATOR WITH DELAYED MOVING BOUNDARY

The simplest adequate model will describe how o, varies along the stack. It is built in
two steps: first, deriving expressions for stress at the first interface ; second, determining
how ¢,,, attenuates in following layers. Recall how the displacement history in Fig. 1(b),
graph (a) led to the lumped Model A. Motion of the first layer can be approximated by
that of single mass—spring oscillator with mass driven by the external force and spring
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connected to a moving base. The base displacement is the same as the mass but with a time
delay t, = c,(w,)/h, where c,(w,) is phase velocity evaluated at the frequency of the lumped
model, o, = %AwPZl. Closed-form expressions for u and ¢ of this new simpler Model B of
the oscillator with moving base are derived in Appendix B. The response of succeeding
masses can be found by repeating the steps above except that stress in the preceding spring
acts as a forcing function and dispersion causes ¢,(w,) to rise smoothly to ¢,(0) = c,. Figure
6 compares histories of ¥ and ¢ as predicted by El-Raheb (1993) and Model B. Also in
Appendix B is derived an asymptotic value of 1/3 for the attenuation o where g, oc ;%
and that ¢,(®,) < ¢, < ¢y and ¢ (w,) < ¢, < .

Figure 7(a)—(c) shows how g, ¢./c, and attenuation index & vary along a 46-set stack
for three values of .#, where ¢, is the transient group velocity of ,,, using the mass—spring
description. From Fig. 7(a,b) and for m = 2, ¢,/c, >~ 0.85 which coincides with c¢,/c, at
w=w, (e, whlco,=1) in Fig. 5(a) and also from eqns (A8) and (A9) yielding
cglco = ﬁ/Z = 0.866. This implies that ¢, = c,(w,) where the force acts and ¢, approaches
¢o smoothly as the stress wave disperses. When .# < 1, 6),, < 1 everywhere and « increases
with m in the interval 0.21 < a < 0.32. Note that the asymptotic value of « determined
numerically is indeed 1/3. « falls as .# increases, apparent from Fig. 7(c) for # = 1.631
where 0.15 < a < 0.28.

5. TRANSMISSION OF ELASTIC FREQUENCIES OF THE HARD LAYER

Appendix C derives relations for ¥ and ¢ in the first hard layer including its high
frequency (H.F.) elastic resonances according to Model C. These high frequencies cor-
respond to elastic motions of the hard layer in PZ2. From (C12), H.F. amplitude is
proportional to (m,#,) ' where w, is fundamental resonance of the hard layer and ¢, is the
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Fig. 6. Histories of « (micro in.) and ¢ at interface of sets for basic stack with # = 1.034, 1, = 20
us : (a), (b) Continuum Model Ref. [1]; (c), (d) Moving base Model B.

rise time of the trapezoidal pulse. H.F. vanishes if w,t; = 2ja = t,, = j/Q,. For illustration,
return to the case treated in Fig. 2, termed stack [, where Q, = 398.2kHz and ¢, = j/Q, = ()
2.5 ps. Clearly, these histories exhibit no H.F. because r, = 5 us =(2) x 2.5 us = ¢,,. Figures
8 and 9 were computed by the method of El-Raheb (1993). In Fig. 8(a)—(f) there appears
o histories in the first two hard layers for 1, = 4 us, 5 ys and 6 us. Pulse width has been
adjusted to keep ¢ at 20 us. Results for ¢, = 4 us and 6 us exhibit H.F. The effects are larger
for t, = 4 us (compare Fig. 8(a) to 8(c)). Figure 8(b), (f) show that H. F. in the second
hard layer diminishes. These histories are repeated in Fig. 9(a)—(f) for stack II with
(h4 hg) =(0.45,0.05) and unchanged material properties for 1, = 3 us, 4.6 us, and 6 us. For
stack II, Q, = 433.6 kHz and r,, = j/Q; = (j) 2.3 us. Thus, by the choice ¢, = 4.6 us, the
response in Fig. 9(c), (d) becomes free of H.F. Results for ¢, = 3 us and 6 ps exhibit H.F.
and the effect is larger for 7, = 3 us (compare Fig. 9(a) to 9(e)).

Dynamic stiffness of the weak layer determines the nature of transmission of H.F. in
hard layers below the first. Except for PZ1, propagation zones belong to one of two types.
The first type includes clusters of m, frequencies centered at a resonance of the unconstrained
hard layer Q,; = jc,/2h,. The second type includes clusters of (m,— 1) frequencies centered
at a resonance of the unconstrained weak layer Qg; = jcz/2h5. To derive the dynamic spring
stiffness &, of the weak layer as an extension to Model C by including its inertia, using
eqns 4(a), (b), evaluate o, u, at x = hy, set u;, = 0 because the weak layer is assumed fixed
to a stationary base as in Model C, and eliminate o, :

Gy = de Uy

kgs= h_BYB cotyg
B

_2mQh, Q2

= o

(16)
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where ( is circular frequency of excitation. In PZ1

Q«Qp =y5< I=yzcotyg~1

=Ky = Eg/hy

recovering the purely spring stiffness in Model C. In a PZ centered at Q,,

k =é ng’“ cot ngﬂ
bd hB QB] QBI ’

As kgqincreases, so does transmission, while amplitude of H.F. diminishes. As & 3, decreases,
so does transmission, while amplitude of H.F. intensifies and becomes confined to the first
layer. For stack I, ©,, = 398.2 kHz and Qp, = 500 kHz producing a (kz,;); = 336.3 E;. For
stack 11, ,, = 433.6 kHz and Q,, = 100 kHz producing a (kg)y = 154.3 E5. Comparing
amplitude of H.F. in Fig. 8(a), (b) and Fig. 9(a), (b) shows that stack II is almost twice
stack I, consistent with the ratio (kgy))/(kgs)u = 2.2.
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6. CONCLUSION

Some insights into uniaxial transient waves in weakly coupled periodic stacks are
captured by examining a series of simplified analytical models suitably modified to include
periodicity and coupling. These models provide accurate description and insights into the
mechanics of propagation and interpretation of experimental results. They also provide
concise formulas helpful in the design of impact resistant structures by judicious attenuation
along the stack of the forcing pulse. Noteworthy results are:

(1)

2

3

(4)

A lumped mass—spring model, Model A, demonstrates that PZ1 dominates response
and reduces the governing equations to conservation form. It also establishes trans-
missibility .# as a scaling parameter.

Model B, a single mass—spring oscillator with delayed moving base, captures the
main features of propagation using the dynamic properties of a single set and phase
velocity evaluated as its natural frequency, and provides simple expressions for stress
at the first interface.

Within a hard layer, peak stress of first arrival o)., achieves a minimum at 0.6 A,.
The phenomenon can be viewed as instantaneous stress lines intersecting to form a
caustic surface.

Asymptotic expansions for phase and group velocities ¢, and ¢, are derived in terms
of even powers of frequency parameters (wh,/c,). The expansions demonstrate that
¢, > ¢, for all w in PZ1 and that (Awpz h,)/c, = 2. Simpler expressions for ¢, and ¢,
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produced by Model A demonstrate that c,(w,) < ¢,
w, is frequency of the periodic set.

(5) The attenuation index «, defined by o,,, ocz, % rises smoothly and slowly along the
stack with an asymptote at « = 1/3, where ¢, is the arrival time of o,,,.

(6) Transmission of H.F. into the succeeding hard layers depends on dynamic stiffness
of the weak layer kg, and rise time ¢,. Transmission is suppressed for the special cases
when w;1, = 27, where ), is elastic axial resonant frequency of the hard layer.

< ¢y and ¢ (w,) < ¢

s < o where
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APPENDIX A: MODEL A: FINITE MASS-SPRING CHAIN

As an approximation to the continuum bi-periodic system including m;, hard layers of material A, bonded by
(m,—1) weak layers of material B, consider the following lumped mass-spring system consisting of m; masses
“m,” connected by (m,— 1) springs with stiffness “k,”.

m, = phg+pghy

ko= (hy/Es+hs/Eg)~" (Al

In terms of axial displacement u; of each mass i, the equations of motion are

i)+l (uy —uy) = F(1){m,

g Qui—w_y —uiyy) =0; 2<i<(m,—1)
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ﬁm;"‘wf (umr_um‘Al) =0 (Az)

where (°) is the time derivative and w, is the frequency of the set

12
@, =t m) = | Z | - 380m (a9
pahaha(1+27 )1+ "1 2

where Awsz, is the frequency width of PZ1. The eigenstates are determined by solving

det [K— @’ =0

I -1 0o o0 0 0
-1 2 -1 0 0 0

K=e?| 0 -1 2 —1 ... 0 0 (Ad)
0 0 0 0 -1 1

where I is the unit matrix. By expanding in eigenfunctions
u=Y )9, (A3)
i

in (A2) and by orthogonality of @; a solution for a({) in terms of Duhamel’s integral results:

a,(n = J' O] F(1)sinew,(1—1)dr

w;N;

N, = m @10, (A6)

where @, is the first component of the eigenvector @,
If the system (A2) were infinite in extent, a Floguet solution periodic in time and space would take the form:

Uiy = e“ui- (A7)

Substituting (A7) in (A2) with 4 replaced by — w?u; yields

_? 201 _ _ H_ (¥ A8
o’ +2wi (1 —cosp) 0=>2 sin (2we>. (A8)

The propagation constraint y is related to wave number k by u = kh,. Expressions for phase and group velocities
¢, and ¢, have the form:

6=,
4 k E
2
u
€q = 3 = CoCOS (5)
co = W,h,. (A9)

As u— 0, ¢, and ¢, approach ¢,. When w = w,, #/2 = n/6 and by (A9) ¢, = (3/n)c, and ¢, = \/3/2c0. Also, when
o = 2w, ~ Aty ¢, = 2/nc, and ¢, = 0. In (A9), ¢, is velocity of the wave front and c, is velocity of peak stress
a1 Expressing ¢, and ¢, in terms of @ = w/(2w,) yields:

¢yley = d@fsin” (&)
€, /e = cos[sin™ (@) =(1—-d™)'"2. (A10)

Both ¢, and ¢, peak at & = 0 and decrease uniformly with &.
Stress in the fth spring g, is given by

o, = k,(u;—u; ). (A11)

Substituting (A11) in (A2) yields the relations
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mti, +a, = F(f)

mito, =0,_,; 2<i<m, (A12)
Integrating (A12) gives

[L ’L
meu1|:;+J oldt=f Fnyde=1,

0 0

meu,-t}%—.[Lo,-dt = jLo‘,_l dr (A13)

0 0

where I, is the external impulse. Figure (1a) reveals that after the passage of the wave front, a motionless plateau
develops in u prior to reflections from the boundary. If ¢, is sufficiently large to lie in the motionless plateau, the
first term becomes negligible and (A13) expresses conservation of momentum :

JLU, dr=1,
0

J'o,d:=J‘a‘._ldt= I, (A14)

0 o

For a rectangular forcing puise of unit intensity applied to a semi-infinite periodic chain, an analytical
expression for transient stress response can be derived by inverting the Fourier transform integral. Transforming
the dynamic eqns (A2) yields

A (g ) = —2—; n=0 (A152)
m.w}
N 1 =
—40% 4, + 2a, — b, ~#,,,)=0; nxzl ﬂn(w)=7f u, (1) e dt (A15b)
/)=
v

where g, = 1 is magnitude of the forcing pulse and &, is its transform. Periodicity requires that

i, = e, _, (Al6)
where p is propagation constant. Substituting (A16) in (A15b) yields the dispersion relation
e =1-20%+23(* — 1)'2. (A17)
Substituting (A16) in (A15a) and eliminating ¢* using (A17) gives the transformed impedance at the excited end
& 1

g, = . (A18)
m,w? 2[@% + &(@* —1)'7?)

Expressing 4, in terms of i, by repeated use of (A16) gives

a, = [1-26° +26(3* — 1) a,. (A19)

The inverse Fourier transform of (A19) is:

u,(t) = Jm [1—2&%+20(d* — 1) 2]"dy (w) e~ dw. (A20)

1
\/27“

£

Following Wang and Lee (1973) which specializes in outgoing waves, the integral in (A20) simplifies to:

(1) = Brotte (1) + 21 .[ o= 01 gy (A21)

o (t—1)
where J is the Bessel function of the first kind. Equation (A21) applies also to normalized stress in the form

Janl20,(—1)]

(1) = b0 +2n L T dr. (A22)

Equation (A22) is the convolution integral of stress transmissibility at the nth interface. Re-writing the integral in
(A22) as
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-I"Jzn[ﬂ(t—t’)] dr — _J"Jzn(ﬁf) ™ ldr; B =2

0 t—t 0 27!
then integrating by parts noting that (see Gradshteyn and Ryzhik, 1970)

f’Jm(ﬂT)d _ a8y
T = —
,L.m—l ﬁtm—l

yields an exact expression for stress transmissibility when ¢ < 1, where £, is the time interval of the forcing pulse

! 2”71(”! Jn+k(ﬁr) .

o,(f) = l_k;oT oy N S S (A23)

For ¢ > 1, changing the upper limit of (A21) to 7, noting that

f F(i—rydr =J\ Fydr;, i=t—1
0 [}

2

then following the procedure that led to (A23) yields

"2 (B k(B0
o=y [ A ac A } 1> 1. (A24)
S B Lpiye (port '
In PZ1, 0,(¢) along the nth layer varies linearly (see eqns (6) and (7))
Cnns1 (5, 8) =(1 =80, () + 0,1 () (A25)

where £ = x/h, is the normalized local axial coordinate along the hard layer of the nth periodic set. Equation
(A24) shows that for large ¢, 6,(7) is periodic with frequency B = 2w, ~ Aws,,. Displacement follows from eqn
(16b) of Wang and Lee (1973):

uo(t) = l j' JA'_”JI(BIN)dt"

m.Wo J_. Jo t
1 ‘ oG
v L {Jl [ﬂ(t—t’)]+2k;1 sz[ﬁ(z—z')]}d,a (A26)

Displacement at other junctions then follows from

n () = w,_ 1 () — 0, () k.. (A27)

APPENDIX B: MODEL B: OSCILLATOR WITH DELAYED MOVING BASE

Figure 10(a) illustrates the oscillator with moving base. The mass m, with displacement u(¢) is driven by F(¢)
against a spring with stiffness £, attached to a moving base with displacement (s —¢,). It is assumed that #(r) =0
when ¢t < 0. The moving base model assumes

() = u{t—ty)

U () =ut—1z), i>1

3
ty = c,(w.)/h, = ;Co/h:; li = Co. (B1)
Substituting (B1) in (A2) produces

4y () + @l [uy () —u, (1— 1)) = F(D)/m,
() + ol () —u, (1—1)] = 0, (1)/m,

0 () = ke [u;_ () —u_y (1—14)] (B2)

where F(f) = o,[H(?) — H(t—t)] and w,, m,, c, are frequency, mass and phase velocity of Model A.
A solution to eqn (B2) proceeds by segmenting time into intervals of width z,. In the first interval 0 < £ < ¢,
u(t—1t,) = 0 and u, (/) is easily found. In each succeeding interval, u(t — t,) is the u determined in the prior interval,



Models for waves in periodic stack 2987

(a) u(t) u(t-ty)

F(t) —»\\

ASSESESSESSS

(b)

—tq—

2t4
td+tf——bl

3ty »>
Fig. 10(b). Time segments in moving base model.

making the forcing function known. This simple recursion becomes slightly more complex during the Jth interval
Jt; < t; < (J+ 1)z, This and all subsequent intervals are further segmented into two subintervals:

Justst; g<isU+Dy,

U+Dy <+t <t <(U+2) (B3)

as shown schematically in Fig. 10(b).

Three special cases arise when 7, lies in the first, second or third z, interval. Now specializing to the first layer
a new notation is used ; subscripts refer to mass number, as in (B1) and (B2), but to time interval and sub-interval
numbers. When ¢ € Ji,, a single subscript is used denoting interval number. When ¢ > Jt,, a double subscript is
used ; the first denotes interval number while the second denotes sub-interval number. For the case when 0 < ¢, < ¢,
the process yields

(1), 0<1<t,

1 {6, . 0,
HN=—|— t—t)dr=—(1— t
up{t) weLm sinw, (z—1)d1 X (1 —cosw,?)

011 (t) = ko, (1) (Bda)
M, <<ty
21 (1
w3 (1) =y, (4) cos w (1 — 1) + u”T(flsinwg(z—z,)

a
= k—°[—c0sw,t+cos w.(t—1)]

012(8) = k3 () (B4b)

-
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2 LS+

u,(t) . ! .
uy, (1) = uy, (L) cos w, (1 —1,)+ —%smwe(t-td)#—wej u (t—ty)sinw,(t—1)dt

e

%
k

e

Uy (1) = [1 —cos,t—cosm, (I —ty)+cosw,(t— 1) — %(t—zd) sinw,{(t—1,) ]

621 (1) = k. Juy () — 1y, (1—1,)]

=0, [—cos W+ cosw,(t—t)— %(r— ) sinw, (1— td)i|. (Bdc)

A similar process applies to the cases when 7, < 7, < 2t,and 21, < 1, < 31, etc.

The second step in building Model B develops an expression for the attenuating of o,,, in layers below the
first. In Whitham (1973), wave amplitude A(x, 1,) is related to arrival time 1, asymptotically in a uniaxial dispersive
medium. A(x, ?) is expressed as a Fourier integral.

Alx, 1) = Jm F(x) exp [ixx— iW(x)t] dx (B5)

-

where F(x) is an arbitrary function satisfying initial and boundary conditions, and w = W(k) is the dispersion
relation. To find the asymptotic expression for large x and ¢ provided (x/7) is held fixed, re-write (B5) as

A(x, ) = J " Py e di

1(K) = W(x) —x)—;; ’—t‘ﬁxed. (B6)

By the method of steepest descent, the main contribution to the integral in (B6) is from the neighborhood of
stationary point k = k such that

X

Yk =Wk -7=0 (B7)
If " (k) # 0, it will be assumed that F(x), %(x) can be expanded in Taylor series near k = k
F(x) ~ F(k)
1(6) = (k) + 50— k)*x" (k). (B8a)
Substituting (B8A) in (B6) and invoking the error integral yields

in

2 12
Alx.1,) ~ SZP F(k) [m} exp [ikx— W k)1, — = sgn W”(k)] (B8b)

where the sum is over all stationary points k. If x”(k) = 0 and " (k) # 0, then the expansion for x(x) becomes

1) = x (k) + gk —k)*x" (k) (B9a)
producing the asymptotic amplitude
1 F(k
VIERARS (§>! 21733576 —Lexp [ikx — iW(k)1,]. (B9b)
s.p. LW kN

For the present case, W(k) is given implicitly by eqn (12). Specializing in waves in PZ1, reduces (12) to (A8),
which when inverted yields the form

2 1
W(k) = — ¢, sin <~ khs> (B10a)
h, 2
with derivatives
W' (k) = cq cosGkh,) (B10b)
W' (k) = ~1coh,sin(kh,) (B10c)
W (k) = —Lcoh? cos(ikh,). (B10d)

From (B10b), k, = 4nn/h, is a stationary point because
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Wk,) — % = W(0)—c, = 0.
Since W"(k,) = 0 and W" (k,) # 0, the asymptotic behavior emerges from (B9b)

O, 1,) o0 1,17, (B11)
More generally, at any point in the stack o,,,, can be expected to obey

o OC 1;7° (B12)

where the attenuation index « is determined numerically.

APPENDIX C: MODEL C: TRANSMISSION OF ELASTIC FREQUENCIES OF THE HARD
LAYER

If we consider that the first hard layer is acted upon its left by the trapezoidal pulse F,(¢) and on its right by
the reaction of the soft layer Fr(r):

FL) = roulHO) = 10 ol t) = H— o | S ity =] €
I 3T 8
Fopy =190 (4 2nt C2
=(1) =73 ’0057 (€C2)

where 1 < 1. Equation (C2) is the same as (1) with o, replaced by no,. From the definition of 1,
tr=3ti+h+h) -1 (C3)
and from (A17) for 21, < n/w,
T = njw, = nhjc,. (C4)
If u(x, ) is expressed as the superposition of static and dynamic solutions to each of F,(¢) and Fr(1)
(X, 1) = wgp (X, 1) + u (XY F (1) + tegp{X, £) + 1 (X) F (1) (C9)

where subscripts s and 4 denote static and dynamic solutions. If u,, (x, ?) is expanded in eigenfunctions of the
traction-free layer

ug (X, 1) = Za:L([)(Pi(X)

dy ity = — % [pA<u,L Lo Ft i«m | 1>F}
N =p Lo o0 (C6)
and similarly for u,,(x, r). For the fundamental mode of the hard layer
@, (x) =cos(ax/hy), w, = mcyfhy (o))

the static solutions are

wi = (8 -g) ¢ 5 ()

Using (C7) and (C8) in (C6) yields
N.=<{g,11>=0; N = %pAhA

Ny=u o= ham?

Ng =<{uxlo) = ham. (C9)
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Solving and summing contributions from a,,(f) and a, g(?) yields:

(A) 01 <
hy, 2 sinw, {
u(x, 1y = —gy=> E nz o, cos ¢
(cos il cosw,
— —COSW
ha, 4 T ‘
——————————cosné
"E 2 (w0} —4n2T?)
ha 1, 1\ »n 2a\ (1, 1
”(X)F(’)—O'OE |: (f—'z'f —§>+§ 1—cos— {58~ ¢
( 2nt
cos—- —cosw f
2sinw;!  4n T .
g x, 1) =064 |— +n— sin
Tk T (0] —4n?(T7)
t n 2nt
G (OF(1) = 0g 1—(1= &) + 2 { 1 —cos ==} &, (C10)
tl 2 T
If 2w, < w,
2 @ 2 20\ 20,
Oa S — % Gar s;’7‘70 (w—1> =04 < HWOI T, (BT) T, (C11)

from which ¢,.(¢) may be neglected.

Byn<r<y

U x,8) =~ — [sinw,t—sinw, (t—t,)] cos n&

w ity

"Ea
=i

04X, 8) >~ 00~

ey
7Z

[smw,t—smw](t—t )] sin né

2nt
g, (x)F(1) = g, |:1—C+ (1—0037)6} (C12)
To first order, ¢, vanishes if
[sinw,t—sinw, (t—1,)] = 0. (C13)
(C13) is satisfied for all 7 if
Yr _ j

w ) =2r=>1 = (Cl14)

w—lEQ—I.

Since w; = iw,, elastic waves of the hard layer are not transmitted when the product of fundamental frequency w;
and rise time 7, is a multiple of 2x.



